Behavioural Biases In Cryptocurrencies

Behavioural biases in cryptocurrencies

Abreu, M., & Mendes, V. (2012). Information, overconfidence and trading: Do the sources of information matter? Journal of Economic Psychology, 33(4), 868–881. https://doi.org/http://dx.doi.org/10.1016/j.joep.2012.04.003

Agarwal, S., Chiu, I., Liu, C., & Rhee, S.

G. (2011). The Brokerage Firm Effect in Herding: Evidence from Indonesia. Journal of Financial Research, 34(3), 461–479.

Ajaz, T., & Kumar, A. S. (2018). Herding In Crypto-Currency Markets. Annals of Financial Economics, 13(02), 1850006.

Antos, J. (2015).

Biases in Bitcoin Adoption and Implication for the Future Digital Currency.

Baddeley, M. (2010). Herding, social influence and economic decision-making: socio-psychological and neuroscientific analyses. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 365(1538), 281–290.

Baek, C., & Elbeck, M. (2015). Bitcoins as an investment or speculative vehicle?

A first look. Applied Economics Letters, 22(1), 30–34.

Baker, H. K., & Nofsinger, J. R. (2002). Psychological biases of investors. Financial Services Review, 11(2), 97–116.

Barber, B.

Using research from psychology and behavioural economics, you can become a better decision-maker.

M., & Odean, T. (2001). Boys will be boys: Gender, overconfidence, and common stock investment.

Behavioural biases in cryptocurrencies

Quarterly Journal of Economics, 261–292.

Baur, D. G., & Dimpfl, T. (2018). Asymmetric volatility in cryptocurrencies. Economics Letters, 173, 148–151. https://doi.org/10.1016/J.ECONLET.2018.10.008

Baur, D. G., Hong, K., & Lee, A. D. (2017). Bitcoin: Medium of Exchange or Speculative Assets? Journal of International Financial Markets, Institutions and Money.

https://doi.org/10.1016/j.intfin.2017.12.004

Belsky, G., & Gilovich, T. (2010). Why smart people make big money mistakes and how to correct them: Lessons from the life-changing science of behavioral economics.

Simon and Schuster.

Bouri, E., Gupta, R., & Roubaud, D. (2018). Herding behaviour in cryptocurrencies. Finance Research Letters. https://doi.org/https://doi.org/10.1016/j.frl.2018.07.008

Bowe, M., & Domuta, D.

Cognitive bias in cryptocurrency: How to identify and avoid it when trading cryptocurrencies

(2004). Investor herding during financial crisis: A clinical study of the Jakarta Stock Exchange. Pacific-Basin Finance Journal, 12(4), 387–418.

Bracha, A., & Brown, D.

J.

Behavioural biases in cryptocurrencies

(2012). Affective decision making: A theory of optimism bias. Games and Economic Behavior, 75(1), 67–80. https://doi.org/http://dx.doi.org/10.1016/j.geb.2011.11.004

Brandvold, M., Molnár, P., Vagstad, K., & Andreas Valstad, O. C. (2015). Price discovery on Bitcoin exchanges. Journal of International Financial Markets, Institutions and Money, 36, 18–35.

https://doi.org/10.1016/J.INTFIN.2015.02.010

Cagli, E. C. (2018). Explosive behavior in the prices of Bitcoin and altcoins. Finance Research Letters. https://doi.org/10.1016/J.FRL.2018.09.007

Carrick, J. (2016). Bitcoin as a Complement to Emerging Market Currencies. Emerging Markets Finance and Trade, 52(10), 2321–2334. https://doi.org/10.1080/1540496X.2016.1193002

Carver, C. S., Scheier, M.

F., & Segerstrom, S. C. (2010). Optimism. Clinical Psychology Review, 30(7), 879–889.

Cheah, E.-T., & Fry, J. (2015). Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin.

Economics Letters, 130, 32–36. https://doi.org/10.1016/J.ECONLET.2015.02.029

Cheung, A., Roca, E., & Su, J.-J. (2015). Crypto-currency bubbles: an application of the Phillips–Shi–Yu (2013) methodology on Mt. Gox bitcoin prices. Applied Economics, 47(23), 2348–2358.

Ciaian, P., Rajcaniova, M., & Kancs, d’Artis.

6 Psychological Biases you’ll experience when it comes to trading Cryptocurrency

(2016). The economics of BitCoin price formation. Applied Economics, 48(19), 1799–1815.

Corbet, S., Lucey, B., Urquhart, A., & Yarovaya, L.

(2018).

Contract for difference cryptocurrency

Cryptocurrencies as a financial asset: A systematic analysis. International Review of Financial Analysis. https://doi.org/10.1016/J.IRFA.2018.09.003

Craggs, B., & Rashid, A. (2016). Poster: The Role of Confirmation Bias in Potentially Undermining Speculative Cryptocurrency Decisions.

In IEEE European Symposium on Security and Privacy.

Duong, C., Pescetto, G., & Santamaria, D. (2014). How value–glamour investors use financial information: UK evidence of investors’ confirmation bias.

Liffe options strategies pdf

The European Journal of Finance, 20(6), 524–549. https://doi.org/10.1080/1351847X.2012.722117

Fischhoff, B., Slovic, P., & Lichtenstein, S. (1977). Knowing with certainty: The appropriateness of extreme confidence. Journal of Experimental Psychology: Human Perception and Performance, 3(4), 552.

Foley, S., Karlsen, J., & Putniņš, T. J.

Behavioural biases in cryptocurrencies

(2018). Sex, drugs, and bitcoin: How much illegal activity is financed through cryptocurrencies? Review of Financial Studies, Forthcoming. https://doi.org/https://dx.doi.org/10.2139/ssrn.3102645

Glaser, F., Haferkorn, M., Weber, M., & Zimmermann, K.

(2014). How to price a digital currency? empirical insights on the influence of media coverage on the bitcoin bubble.

Glaser, M, & Weber, M.

Latest crypto guides

(2007). Overconfidence and trading volume. . The Geneva Risk and Insurance Review, 32(1), 1–36.

Glaser, Markus, & Weber, M.

Behavioural biases in cryptocurrencies

(2007). Overconfidence and trading volume. The Geneva Risk and Insurance Review, 32(1), 1–36.

Grinblatt, M., & Keloharju, M. (2009). Sensation seeking, overconfidence, and trading activity. The Journal of Finance, 64(2), 549–578.

Hagstrom, R. G. (1999). The Warren Buffett Portfolio: Mastering the Power of the Focus Investment Strategy. New Jersey: John Wiley & Sons.

Hasanah, K.

(2017). PENGARUH CELEBRITY’S ENDORSMENT DAN WORD OF MOUTH TERHADAP KEPUTUSAN MENONTON FILM NASIONAL. Fokus Ekonomi, 12(1), 99–116.

Hirschey, M., & Nofsinger, J. R. (2008). Investments: analysis and behavior (Vol. 281). McGraw-Hill Irwin New York, USA.

Hwang, S., & Salmon, M.

(2004). Market stress and herding. Journal of Empirical Finance, 11(4), 585–616.

Irwin, A. S. M., & Milad, G. (2016). The use of crypto-currencies in funding violent jihad. Journal of Money Laundering Control, 19(4), 407–425. https://doi.org/10.1108/JMLC-01-2016-0003

Jacobsen, B., Lee, J. B., Marquering, W., & Zhang, C.

Y. (2014). Gender differences in optimism and asset allocation. Journal of Economic Behavior & Organization, 107, Part(0), 630–651. https://doi.org/http://dx.doi.org/10.1016/j.jebo.2014.03.007

Kinari, Y. (2016). Properties of expectation biases: Optimism and overconfidence. Journal of Behavioral and Experimental Finance, 10, 32–49. https://doi.org/http://dx.doi.org/10.1016/j.jbef.2016.02.003

Klein, T., Pham Thu, H., & Walther, T. (2018). Bitcoin is not the New Gold – A comparison of volatility, correlation, and portfolio performance.

International Review of Financial Analysis, 59, 105–116. https://doi.org/https://doi.org/10.1016/j.irfa.2018.07.010

Kristoufek, L.

(2013). BitCoin meets Google Trends and Wikipedia: Quantifying the relationship between phenomena of the Internet era. Scientific Reports, 3, 3415. Retrieved from https://doi.org/10.1038/srep03415

Kumar, S., & Goyal, N. (2015). Behavioural biases in investment decision making – a systematic literature review. Qualitative Research in Financial Markets, 7(1), 88–108.

https://doi.org/doi:10.1108/QRFM-07-2014-0022

Leclair, E. M. (2018). Herding in the cryptocurrency market. Retrieved from Researchgate.net

Lehman, R. (2017). A Behavioral Finance View of Cryptocurrencies. Retrieved from https://www.behavioralfinance.com/bitcoin-behavior/2017/12/13/a-behavioral-finance-view-of-cryptocurrencies

Liu, H., & Du, S. (2016). Can an overconfident insider coexist with a representativeness heuristic insider? Economic Modelling, 54, 170–177.

https://doi.org/http://dx.doi.org/10.1016/j.econmod.2015.12.032

McFadden, D. L. (2013). The new science of pleasure. National Bureau of Economic Research.

Metawa, N., Hassan, M. K., Metawa, S., & Safa, M. F. (2018). Impact of behavioral factors on investors’ financial decisions: case of the Egyptian stock market. International Journal of Islamic and Middle Eastern Finance and Management, 12(1), 30–55. https://doi.org/10.1108/IMEFM-12-2017-0333

Nakamoto, S.

Should investing be left to machines?

(2008). Bitcoin: A peer-to-peer electronic cash system. Retrieved from www.bitcoin.org

Nelson, J. A. (2014). The power of stereotyping and confirmation bias to overwhelm accurate assessment: the case of economics, gender, and risk aversion.

Journal of Economic Methodology, 21(3), 211–231. https://doi.org/10.1080/1350178X.2014.939691

Odean, T. (1998). Do investors trade too much? Available at SSRN 94143.

Pan, C. H., & Statman, M. (2012). Questionnaires of risk tolerance, regret, overconfidence, and other investor propensities. Journal of Investment Consulting, 13(1), 54–63.

Park, J., Konana, P., Gu, B., Kumar, A., & Raghunathan, R. (2010). Confirmation bias, overconfidence, and investment performance: Evidence from stock message boards.

McCombs Research Paper Series No. IROM-07-10.

Pompian, M. M. (2006). Behavioral finance and wealth management. How to Build Optimal Portfolios That Account for Investor Biases, New Jersey.

Poyser, O. (2018). Herding behavior in cryptocurrency markets. ArXiv Preprint ArXiv:1806.11348.

Retrieved from http://arxiv.org/abs/1806.11348

Rau, H. A. (2014). The disposition effect and loss aversion: Do gender differences matter? Economics Letters, 123(1), 33–36.

Rodrigue, J.-P. (2017). The Geography of Transport Systems. New York: Routledge.

Shefrin, H. (2002). Beyond greed and fear: Understanding behavioral finance and the psychology of investing. Oxford University Press on Demand.

Shefrin, H., & Statman, M.

(1985). The Disposition to Sell Winners Too Early and Ride Losers Too Long: Theory and Evidence. The Journal of Finance, 40(3), 777–790. https://doi.org/10.1111/j.1540-6261.1985.tb05002.x

Shiller, R.

J. (2000). Irrational Exuberance. Princeton University Press.

Spyrou, S.

Should investing be left to robots?

(2013). Herding in financial markets: a review of the literature. Review of Behavioral Finance, 5(2), 175–194. https://doi.org/doi:10.1108/RBF-02-2013-0009

Statman, M. (2008). What is behavioral finance? John Wiley & Sons.

Statman, M., Thorley, S., & Vorkink, K. (2006). Investor overconfidence and trading volume.

Review of Financial Studies, 19(4), 1531–1565.

Trepongkaruna, S., Tant, K., Newby, R., & Durand, R. (2013). Overconfidence, overreaction and personality. Review of Behavioral Finance, 5(2), 104–133. https://doi.org/10.1108/RBF-07-2012-0011

Vidal-Tomás, D., Ibáñez, A.

M., & Farinós, J. E. (2018). Herding in the cryptocurrency market: CSSD and CSAD approaches. Finance Research Letters. https://doi.org/https://doi.org/10.1016/j.frl.2018.09.008

Weber, M., & Camerer, C.

Behavioural biases in cryptocurrencies

F. (1998). The disposition effect in securities trading: An experimental analysis. Journal of Economic Behavior & Organization, 33(2), 167–184.

Xia, T., Wang, Z., & Li, K. (2014).

Financial literacy overconfidence and stock market participation. Social Indicators Research, 119(3), 1233–1245.

Xu, J., & Harvey, N. (2014). Carry on winning: The gamblers’ fallacy creates hot hand effects in online gambling. Cognition, 131(2), 173–180. https://doi.org/https://doi.org/10.1016/j.cognition.2014.01.002

Yang, H.

(2018). Behavioral Anomalies in Cryptocurrency Markets. SSRN Electronic Journal. Available at: Https://Ssrn.Com/Abstract=3174421. https://doi.org/https://dx.doi.org/10.2139/ssrn.3174421

Yelowitz, A., & Wilson, M.

(2015). Characteristics of Bitcoin users: an analysis of Google search data. Applied Economics Letters, 22(13), 1030–1036.

Zahera, S.

A., & Bansal, R. (2018).

Behavioral Finance - Investor Irrationality

Do investors exhibit behavioral biases in investment decision making? A systematic review. Qualitative Research in Financial Markets, 00–00. https://doi.org/10.1108/QRFM-04-2017-0028